101,434 research outputs found

    Theoretical understanding of the quasiparticle dispersion in bilayer high-TcT_{c} superconductors

    Get PDF
    The renormalization of quasiparticle (QP) dispersion in bilayer high-TcT_{c} cuprates is investigated theoretically by examining respectively the interactions of the QP with spin fluctuations (SF) and phonons. It is illustrated that both interactions are able to give rise to a kink in the dispersion around the antinodes (near (π,0)(\pi,0)). However, remarkable differences between the two cases are found for the peak/dip/hump structure in the lineshape, the QP weight, and the interlayer coupling effect on the kink, which are suggested to serve as a discriminance to single out the dominant interaction in the superconducting state. A comparison to recent photoemission experiments shows clearly that the coupling to the spin resonance is dominant for the QP around antinodes in bilayer systems.Comment: 4 pages, 4 figure

    Superconducting energy gap in MgCNi3 single crystals: Point-contact spectroscopy and specific-heat measurements

    Get PDF
    Specific heat has been measured down to 600 mK and up to 8 Tesla by the highly sensitive AC microcalorimetry on the MgCNi3 single crystals with Tc ~ 7 K. Exponential decay of the electronic specific heat at low temperatures proved that a superconducting energy gap is fully open on the whole Fermi surface, in agreement with our previous magnetic penetration depth measurements on the same crystals. The specific-heat data analysis shows consistently the strong coupling strength 2D/kTc ~ 4. This scenario is supported by the direct gap measurements via the point-contact spectroscopy. Moreover, the spectroscopy measurements show a decrease in the critical temperature at the sample surface accounting for the observed differences of the superfluid density deduced from the measurements by different techniques

    Integrable model of interacting XX and Fateev-Zamolodchikov chains

    Full text link
    We consider the exact solution of a model of correlated particles, which is presented as a system of interacting XX and Fateev-Zamolodchikov chains. This model can also be considered as a generalization of the multiband anisotropic tJt-J model in the case we restrict the site occupations to at most two electrons. The exact solution is obtained for the eigenvalues and eigenvectors using the Bethe-ansatz method.Comment: 10 pages, no figure

    ARPES studies of cuprate Fermiology: superconductivity, pseudogap, and quasiparticle dynamics

    Full text link
    We present angle-resolved photoemission spectroscopy (ARPES) studies of the cuprate high-temperature superconductors which elucidate the relation between superconductivity and the pseudogap and highlight low-energy quasiparticle dynamics in the superconducting state. Our experiments suggest that the pseudogap and superconducting gap represent distinct states, which coexist below Tc_c. Studies on Bi-2212 demonstrate that the near-nodal and near-antinodal regions behave differently as a function of temperature and doping, implying that different orders dominate in different momentum-space regions. However, the ubiquity of sharp quasiparticles all around the Fermi surface in Bi-2212 indicates that superconductivity extends into the momentum-space region dominated by the pseudogap, revealing subtlety in this dichotomy. In Bi-2201, the temperature dependence of antinodal spectra reveals particle-hole asymmetry and anomalous spectral broadening, which may constrain the explanation for the pseudogap. Recognizing that electron-boson coupling is an important aspect of cuprate physics, we close with a discussion of the multiple 'kinks' in the nodal dispersion. Understanding these may be important to establishing which excitations are important to superconductivity.Comment: To appear in a focus issue on 'Fermiology of Cuprates' in New Journal of Physic

    Thermal Decomposition of the Murchison CM2 Carbonaceous Chondrite: Implications of Space Weathering Processes for Sample Return Missions

    Get PDF
    Primitive carbonaceous asteroids are the target bodies for the JAXA Hayabusa2 mission to Ryugu and the NASA OSIRIS-REx mission to Bennu. Both asteroids share spectral characteristics of CI/CM type carbonaceous chondrites. Ryugu, in particular, appears to have undergone thermal processing that has modified its spectral properties. The nature and extent of space weathering processes on the surfaces of Bennu and Ryugu are under active investigation using remote sensing data from the missions [4] and through laboratory studies on analog materials. The analog studies are needed in order to understand the mineralogical and chemical changes that occur in space weathered samples that give rise to the observed optical effects measured by remote-sensing and to prepare for the analysis of returned samples. The space weathering effects of micrometeorite impact and solar wind irradiation on primitive carbonaceous chondrites have been simulated by analog studies on the Murchison CM2 chondrite. We performed a coordinated mineralogical, chemical and spectroscopic study to examine in detail the effects of thermal metamorphism on Murchison samples as an analog to processes that may have occurred on Ryugu. The bulk measurements including X-ray diffraction (XRD), Mssbauer spectroscopy, UV-VIS-NIR spectroscopy, thermogravimetric analysis, and evolved gas analysis are reported in a companion paper. Here we report on our preliminary nanoscale mineralogical and chemical analyses of pre- and post-heated Murchison samples using multiple electron beam techniques to understand how the mineralogical, chemical, and physical characteristics of carbonaceous chondrites change with increasing thermal effects

    Thermal design and analysis of a hydrogen-burning wind tunnel model of an airframe-integrated scramjet

    Get PDF
    An aerodynamic model of a hydrogen burning, airframe integrated scramjet engine has been designed, fabricated, and instrumented. This model is to be tested in an electric arc heated wind tunnel at an altitude of 35.39 km (116,094 ft.) but with an inlet Mach number of 6 simulating precompression on an aircraft undersurface. The scramjet model is constructed from oxygen free, high conductivity copper and is a heat sink design except for water cooling in some critical locations. The model is instrumented for pressure, surface temperature, heat transfer rate, and thrust measurements. Calculated flow properties, heat transfer rates, and surface temperature distributions along the various engine components are included for the conditions stated above. For some components, estimates of thermal strain are presented which indicate significant reductions in plastic strain by selective cooling of the model. These results show that the 100 thermal cycle life of the engine was met with minimum distortion while staying within the 2669 N (600 lbf) engine weight limitation and while cooling the engine only in critical locations

    Influence of Al doping on the critical fields and gap values in magnesium diboride single crystals

    Get PDF
    The lower (Hc1H_{c1}) and upper (Hc2H_{c2}) critical fields of Mg1x_{1-x}Alx_{x}B2_2 single crystals (for x=0x = 0, 0.1 and 0.2\gtrsim 0.2) have been deduced from specific heat and local magnetization measurements, respectively. We show that Hc1H_{c1} and Hc2H_{c2} are both decreasing with increasing doping content. The corresponding anisotropy parameter ΓHc2(0)=Hc2ab(0)/Hc2c(0)\Gamma_{H_{c2}}(0) = H^{ab}_{c2}(0)/H^c_{c2}(0) value also decreases from 5\sim 5 in pure MgB2_2 samples down to 1.5\sim 1.5 for x0.2x \gtrsim 0.2 whereas ΓHc1(0)=Hc1c(0)/Hc1ab(0)\Gamma_{H_{c1}}(0)=H^c_{c1}(0)/H^{ab}_{c1}(0) remains on the order of 1 in all samples. The small and large gap values have been obtained by fitting the temperature dependence of the zero field electronic contribution to the specific heat to the two gap model for the three Al concentrations. Very similar values have also been obtained by point contact spectroscopy measurements. The evolution of those gaps with Al concentration suggests that both band filling and interband scattering effects are present

    The Dimensional Recurrence and Analyticity Method for Multicomponent Master Integrals: Using Unitarity Cuts to Construct Homogeneous Solutions

    Full text link
    We consider the application of the DRA method to the case of several master integrals in a given sector. We establish a connection between the homogeneous part of dimensional recurrence and maximal unitarity cuts of the corresponding integrals: a maximally cut master integral appears to be a solution of the homogeneous part of the dimensional recurrence relation. This observation allows us to make a necessary step of the DRA method, the construction of the general solution of the homogeneous equation, which, in this case, is a coupled system of difference equations.Comment: 17 pages, 2 figure
    corecore